Alternating evolution discontinuous Galerkin methods for convection-diffusion equations

نویسندگان

  • Hailiang Liu
  • Michael Pollack
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension

In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...

متن کامل

Analysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems

In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.

متن کامل

The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (Lévy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through n...

متن کامل

Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations

In this paper we consider the local discontinuous Galerkin method based on the generalized alternating numerical fluxes, for solving the linear convection-diffusion equations in one dimension and two dimensions. As an application of generalized Gauss–Radau projections, we get rid of the dual argument and obtain directly the optimal L2-norm error estimate in a uniform framework. The sharpness of...

متن کامل

Superconvergence of the local discontinuous Galerkin method for nonlinear convection-diffusion problems

In this paper, we discuss the superconvergence of the local discontinuous Galerkin methods for nonlinear convection-diffusion equations. We prove that the numerical solution is [Formula: see text]th-order superconvergent to a particular projection of the exact solution, when the upwind flux and the alternating fluxes are used. The proof is valid for arbitrary nonuniform regular meshes and for p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2016